Search results
Results From The WOW.Com Content Network
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.
The adjugate of a diagonal matrix is again diagonal. Where all matrices are square, A matrix is diagonal if and only if it is triangular and normal. A matrix is diagonal if and only if it is both upper-and lower-triangular. A diagonal matrix is symmetric. The identity matrix I n and zero matrix are diagonal. A 1×1 matrix is always diagonal.
This is because any function of a non-defective matrix acts directly on each of its eigenvalues, and the conjugate transpose of its spectral decomposition is , where is the diagonal matrix of eigenvalues. Likewise, if two normal matrices commute and are therefore simultaneously diagonalizable, any operation between these matrices also acts on ...
The norm derived from this inner product is called the Frobenius norm, and it satisfies a submultiplicative property, as can be proven with the Cauchy–Schwarz inequality: [ ()] , if A and B are real matrices such that A B is a square matrix. The Frobenius inner product and norm arise frequently in matrix calculus and statistics.
The smallest singular value of a matrix A is σ n (A). It has the following properties for a non-singular matrix A: The 2-norm of the inverse matrix (A −1) equals the inverse σ n −1 (A). [2]: Thm.3.3 The absolute values of all elements in the inverse matrix (A −1) are at most the inverse σ n −1 (A). [2]: Thm.3.3
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.
In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square ...
The 2-norm of a matrix A is the norm based on the Euclidean vectornorm; that is, the largest value ‖ ‖ when x runs through all vectors with ‖ ‖ =. It is the largest singular value of . In case of a symmetric matrix it is the largest absolute value of its eigenvectors and thus equal to its spectral radius.