Search results
Results From The WOW.Com Content Network
Alpha halogenated products are very useful compounds as they have high reactivity which makes them very prone to reacting. Alpha halogenated ketones react with nucleophiles to create many valuable compounds. However, many of the current method for ketone halogenation use hazardous chemicals, have complex procedures, and/or require a long time ...
The reaction process begins with deprotonation at the halogenated position. In a related reaction, α-halo carboxylic esters can be reduced by lithium aluminium hydride to the α-halo alcohols, which can be converted to the α-epoxides. [5] α-Halo-esters can be converted to vinyl halides. upon reaction with ketones and chromous chloride. [6]
α-Halo ketones can react with amines to form an α-halo imine, which can be converted back to the parent halo ketone by hydrolysis, so that halo imines may be used as masked versions of halo ketones. This allows some chemical transformations to be achieved that are not possible with the parent halo ketones directly. [4]
Several pathways exist for the halogenation of organic compounds, including free radical halogenation, ketone halogenation, electrophilic halogenation, and halogen addition reaction. The nature of the substrate determines the pathway. The facility of halogenation is influenced by the halogen.
An example of the Hell–Volhard–Zelinsky reaction can be seen in the preparation of alanine from propionic acid.In the first step, a combination of bromine and phosphorus tribromide is used in the Hell–Volhard–Zelinsky reaction to prepare 2-bromopropionic acid, [3] which in the second step is converted to a racemic mixture of the amino acid product by ammonolysis.
Ketogenesis pathway. The three ketone bodies (acetoacetate, acetone, and beta-hydroxy-butyrate) are marked within orange boxes. Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids.
In organic chemistry, α-halo ketones can be reduced with loss of the halogen atom to form enolates.The α-halo ketones are readily prepared from ketones by various ketone halogenation reactions, and the products are reactive intermediates that can be used for a variety of other chemical reactions.
Alkenones are long-chain unsaturated methyl and ethyl n-ketones produced by a few phytoplankton species of the class Prymnesiophyceae. [1] Alkenones typically contain between 35 and 41 carbon atoms and with between two and four double bonds . [ 2 ]