When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. NAND logic - Wikipedia

    en.wikipedia.org/wiki/NAND_logic

    A CMOS transistor NAND element. V dd denotes positive voltage.. In CMOS logic, if both of the A and B inputs are high, then both the NMOS transistors (bottom half of the diagram) will conduct, neither of the PMOS transistors (top half) will conduct, and a conductive path will be established between the output and Vss (ground), bringing the output low.

  3. Inverter (logic gate) - Wikipedia

    en.wikipedia.org/wiki/Inverter_(logic_gate)

    It is also called the complement gate [2] because it produces the ones' complement of a binary number, swapping 0s and 1s. The NOT gate is one of three basic logic gates from which any Boolean circuit may be built up. Together with the AND gate and the OR gate, any function in binary mathematics may be implemented.

  4. NAND gate - Wikipedia

    en.wikipedia.org/wiki/NAND_gate

    The NAND gate has the property of functional completeness, which it shares with the NOR gate. That is, any other logic function (AND, OR, etc.) can be implemented using only NAND gates. [2] An entire processor can be created using NAND gates alone. In TTL ICs using multiple-emitter transistors, it also requires fewer transistors than a NOR gate.

  5. Logical connective - Wikipedia

    en.wikipedia.org/wiki/Logical_connective

    Another approach is to use with equal rights connectives of a certain convenient and functionally complete, but not minimal set. This approach requires more propositional axioms, and each equivalence between logical forms must be either an axiom or provable as a theorem. The situation, however, is more complicated in intuitionistic logic.

  6. Toffoli gate - Wikipedia

    en.wikipedia.org/wiki/Toffoli_gate

    A NOT gate, for example, can be constructed from a Toffoli gate by setting the three input bits to {a, 1, 1}, making the third output bit (1 XOR (a AND 1)) = NOT a; (a AND b) is the third output bit from {a, b, 0}. Essentially, this means that one can use Toffoli gates to build systems that will perform any desired Boolean function computation ...

  7. Triple modular redundancy - Wikipedia

    en.wikipedia.org/wiki/Triple_modular_redundancy

    3-input majority gate using 4 NAND gates. The 3-input majority gate output is 1 if two or more of the inputs of the majority gate are 1; output is 0 if two or more of the majority gate's inputs are 0. Thus, the majority gate is the carry output of a full adder, i.e., the majority gate is a voting machine. [7]

  8. Functional completeness - Wikipedia

    en.wikipedia.org/wiki/Functional_completeness

    The 3-input Fredkin gate is functionally complete reversible gate by itself – a sole sufficient operator. There are many other three-input universal logic gates, such as the Toffoli gate . In quantum computing , the Hadamard gate and the T gate are universal, albeit with a slightly more restrictive definition than that of functional completeness.

  9. Controlled NOT gate - Wikipedia

    en.wikipedia.org/wiki/Controlled_NOT_gate

    The classical analog of the CNOT gate is a reversible XOR gate. How the CNOT gate can be used (with Hadamard gates) in a computation.. In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer.