Search results
Results From The WOW.Com Content Network
The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period ...
[1]: 3 The portion of instantaneous power that results in no net transfer of energy but instead oscillates between the source and load in each cycle due to stored energy is known as instantaneous reactive power, and its amplitude is the absolute value of reactive power.
Instantaneous current declines to steady-state current as the capacitor reaches full charge. In the case of open circuit, the capacitor will be charged to the peak AC voltage (one cannot actually charge a capacitor with AC line power, so this refers to a varying but unidirectional voltage; e.g., the voltage output from a rectifier).
Power in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or the product of a torque on a shaft and the shaft's angular velocity. Mechanical power is also described as the time derivative of work.
A phasor such as E m is understood to signify a sinusoidally varying field whose instantaneous amplitude E(t) follows the real part of E m e jωt where ω is the (radian) frequency of the sinusoidal wave being considered. In the time domain, it will be seen that the instantaneous power flow will be fluctuating at a frequency of 2ω.
The following may be deduced by applying the principle of superposition to two sinusoidal waves, using trigonometric identities. The angle addition and sum-to-product trigonometric formulae are useful; in more advanced work complex numbers and fourier series and transforms are used.
In electrical engineering, the alpha-beta transformation (also known as the Clarke transformation) is a mathematical transformation employed to simplify the analysis of three-phase circuits.
Equivalent Spring Constant (Series) When putting two springs in their equilibrium positions in series attached at the end to a block and then displacing it from that equilibrium, each of the springs will experience corresponding displacements x 1 and x 2 for a total displacement of x 1 + x 2. We will be looking for an equation for the force on ...