When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  3. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Structured support-vector machine is an extension of the traditional SVM model. While the SVM model is primarily designed for binary classification, multiclass classification, and regression tasks, structured SVM broadens its application to handle general structured output labels, for example parse trees, classification with taxonomies ...

  4. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .

  5. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]

  6. Space vector modulation - Wikipedia

    en.wikipedia.org/wiki/Space_vector_modulation

    Space vector modulation (SVM) is an algorithm for the control of pulse-width modulation (PWM), invented by Gerhard Pfaff, Alois Weschta, and Albert Wick in 1982. [1] [2] It is used for the creation of alternating current (AC) waveforms; most commonly to drive 3 phase AC powered motors at varying speeds from DC using multiple class-D amplifiers.

  7. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    LIBSVM and LIBLINEAR are two popular open source machine learning libraries, both developed at the National Taiwan University and both written in C++ though with a C API. LIBSVM implements the sequential minimal optimization (SMO) algorithm for kernelized support vector machines (SVMs), supporting classification and regression. [1]

  8. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  9. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    The plot shows that the Hinge loss penalizes predictions y < 1, corresponding to the notion of a margin in a support vector machine. In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). [1]