Search results
Results From The WOW.Com Content Network
On x86 and x86-64, the most common C/C++ compilers implement long double as either 80-bit extended precision (e.g. the GNU C Compiler gcc [13] and the Intel C++ Compiler with a /Qlong‑double switch [14]) or simply as being synonymous with double precision (e.g. Microsoft Visual C++ [15]), rather than as quadruple precision.
Double precision is not required by the standards (except by the optional annex F of C99, covering IEEE 754 arithmetic), but on most systems, the double type corresponds to double precision. However, on 32-bit x86 with extended precision by default, some compilers may not conform to the C standard or the arithmetic may suffer from double ...
Over time, the PE format has grown with the Windows platform. Notable extensions include the .NET PE format for managed code, PE32+ for 64-bit address space support, and a specialized version for Windows CE. To determine whether a PE file is intended for 32-bit or 64-bit architectures, one can examine the Machine field in the IMAGE_FILE_HEADER. [6]
In this document, entitled Unicode 88, Becker outlined a scheme using 16-bit characters: [7] Unicode is intended to address the need for a workable, reliable world text encoding. Unicode could be roughly described as "wide-body ASCII" that has been stretched to 16 bits to encompass the characters of all the world's living languages. In a ...
A "character" may use any number of Unicode code points. [20] For instance an emoji flag character takes 8 bytes, since it is "constructed from a pair of Unicode scalar values" [21] (and those values are outside the BMP and require 4 bytes each). UTF-16 in no way assists in "counting characters" or in "measuring the width of a string".
In the original SSE instruction set, conversion to and from integers placed the integer data in the 64-bit MMX registers. SSE2 enables the programmer to perform SIMD math on any data type (from 8-bit integer to 64-bit float) entirely with the XMM vector-register file, without the need to use the legacy MMX or FPU registers.
On a typical computer system, a double-precision (64-bit) binary floating-point number has a coefficient of 53 bits (including 1 implied bit), an exponent of 11 bits, and 1 sign bit. Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ ...
This is a list of some binary codes that are (or have been) used to represent text as a sequence of binary digits "0" and "1". Fixed-width binary codes use a set number of bits to represent each character in the text, while in variable-width binary codes, the number of bits may vary from character to character.