Search results
Results From The WOW.Com Content Network
The cochlea is a portion of the inner ear that looks like a snail shell (cochlea is Greek for snail). [5] The cochlea receives sound in the form of vibrations, which cause the stereocilia to move. The stereocilia then convert these vibrations into nerve impulses which are taken up to the brain to be interpreted.
The volley theory was explained in depth in Ernest Wever's 1949 book, Theory of Hearing [2] Groups of neurons in the cochlea individually fire at subharmonic frequencies of a sound being heard and collectively phase-lock to match the total frequencies of the sound. The reason for this is that neurons can only fire at a maximum of about 500 Hz ...
Tonotopic organization in the cochlea forms throughout pre- and post-natal development through a series of changes that occur in response to auditory stimuli. [7] Research suggests that the pre-natal establishment of tonotopic organization is partially guided by synaptic reorganization; however, more recent studies have shown that the early changes and refinements occur at both the circuit and ...
The cochlea propagates these mechanical signals as waves in the fluid and membranes and then converts them to nerve impulses which are transmitted to the brain. [ 4 ] The vestibular system is the region of the inner ear where the semicircular canals converge, close to the cochlea.
To be complete, rate theory must somehow explain how we distinguish pitches above this maximum firing rate. The volley theory, in which groups of neurons cooperate to code the temporal pattern, is an attempt to make the temporal theory more complete, but some frequencies are too high to see any synchrony in the cochlear nerve firings.
Place theory is a theory of hearing that states that our perception of sound depends on where each component frequency produces vibrations along the basilar membrane.By this theory, the pitch of a sound, such as a human voice or a musical tone, is determined by the places where the membrane vibrates, based on frequencies corresponding to the tonotopic organization of the primary auditory neurons.
Together with the cochlea, a part of the auditory system, it constitutes the labyrinth of the inner ear in most mammals. As movements consist of rotations and translations, the vestibular system comprises two components: the semicircular canals, which indicate rotational movements; and the otoliths, which indicate linear accelerations.
In the cochlea, the vibrations are transduced into electrical information through the firing of hair cells in the organ of Corti. The organ of Corti projects in an orderly fashion to structures in the brainstem (namely, the cochlear nuclei and the inferior colliculus ), and from there to the medial geniculate nucleus of the thalamus and the ...