When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Categorical distribution - Wikipedia

    en.wikipedia.org/wiki/Categorical_distribution

    In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution [1]) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified.

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Dirichlet distribution, a generalization of the beta distribution. The Ewens's sampling formula is a probability distribution on the set of all partitions of an integer n, arising in population genetics. The Balding–Nichols model; The multinomial distribution, a generalization of the binomial distribution.

  4. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    An absolutely continuous random variable is a random variable whose probability distribution is absolutely continuous. There are many examples of absolutely continuous probability distributions: normal, uniform, chi-squared, and others.

  6. Hoeffding's independence test - Wikipedia

    en.wikipedia.org/wiki/Hoeffding's_independence_test

    where is the joint distribution function of two random variables, and and are their marginal distribution functions. Hoeffding derived an unbiased estimator of H {\displaystyle H} that can be used to test for independence , and is consistent for any continuous alternative .

  7. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  8. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    As the logistic distribution, which can be solved analytically, is similar to the normal distribution, it can be used instead. The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution.

  9. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.