Search results
Results From The WOW.Com Content Network
If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, ρ XY is near +1 (or −1). If ρ XY equals +1 or −1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight ...
The joint pdf () () exists ... When two random variables are statistically independent, the expectation of their product is the product of their expectations.
In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional normal distribution to higher dimensions.
Every random vector gives rise to a probability measure on with the Borel algebra as the underlying sigma-algebra. This measure is also known as the joint probability distribution, the joint distribution, or the multivariate distribution of the random vector.
A way of deriving the ratio distribution of = / from the joint distribution of the two other random variables X , Y, with joint pdf , (,), is ... The joint pdf is
Given a known joint distribution of two discrete random variables, say, X and Y, the marginal distribution of either variable – X for example – is the probability distribution of X when the values of Y are not taken into consideration. This can be calculated by summing the joint probability distribution over all values of Y.
This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.
In a model where a Dirichlet prior distribution is placed over a set of categorical-valued observations, the marginal joint distribution of the observations (i.e. the joint distribution of the observations, with the prior parameter marginalized out) is a Dirichlet-multinomial distribution.