Search results
Results From The WOW.Com Content Network
The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality. [citation needed] In 2013, its numerical value in decimal notation was computed to ten billion digits. [1] Its decimal expansion, written here to 65 decimal places, is given by OEIS: A002194:
The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.
In fact, all square roots of natural numbers, other than of perfect squares, are irrational. [2] Like all real numbers, irrational numbers can be expressed in positional notation, notably as a decimal number. In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence.
In 1637 Descartes was the first to unite the German radical sign √ with the vinculum to create the radical symbol in common use today. [8] The symbol used to indicate a vinculum need not be a line segment (overline or underline); sometimes braces can be used (pointing either up or down). [9]
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. [a] Every real number can be almost uniquely represented by an infinite decimal expansion. [b] [1]
√ (square-root symbol) Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
For example √ p+q is the square root of the sum. The bar is also a symbol of grouping in repeated decimal digits. A decimal point followed by one or more digits with a bar over them, for example 0. 123, represents the repeating decimal 0.123123123... . [2] A superscript is understood to be grouped as long as it continues in the form of a ...