Search results
Results From The WOW.Com Content Network
In some reactions between highly reactive metals (usually from Group 1 or Group 2) and highly electronegative halogen gases, or water, the atoms can be ionized by electron transfer, [16] a process thermodynamically understood using the Born–Haber cycle. [17] Salts are formed by salt-forming reactions. A base and an acid, e.g., NH 3 + HCl → ...
[1] [2] In general, cyclic salt deposits are lower at sites further inland and are most abundant along the shoreline, although this pattern varies depending on the given environmental conditions. [3] Use of the term "cyclic" refers to the cycle in which the salt moves from sea to land and is then washed by rainwater back to the sea.
According to a study paid for by the Gatorade Sports Science Institute, electrolyte drinks containing sodium and potassium salts replenish the body's water and electrolyte concentrations after dehydration caused by exercise, excessive alcohol consumption, diaphoresis (heavy sweating), diarrhea, vomiting, intoxication or starvation; the study ...
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
The word oxygen in the literature typically refers to molecular oxygen (O 2) since it is the common product or reactant of many biogeochemical redox reactions within the cycle. [37] Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O 2 production) or sink (O 2 consumption). [36 ...
A hydrogen bond (H-bond), is a specific type of interaction that involves dipole–dipole attraction between a partially positive hydrogen atom and a highly electronegative, partially negative oxygen, nitrogen, sulfur, or fluorine atom (not covalently bound to said hydrogen atom). It is not a covalent bond, but instead is classified as a strong ...
Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the ...
Strongly electronegative atoms (such as halogens) often have only one or two empty electron states in their valence shell, and frequently bond with other atoms or gain electrons to form anions. Weakly electronegative atoms (such as alkali metals ) have relatively few valence electrons , which can easily be lost to strongly electronegative atoms.