Ads
related to: examples of non recurring decimals worksheet pdf 5th grade
Search results
Results From The WOW.Com Content Network
Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Alternatively, if there are infinitely many decimal repunit primes, or infinitely many Mersenne primes, then there are infinitely many Brazilian primes. [10] Because a vanishingly small fraction of primes are Brazilian, there are infinitely many non-Brazilian primes, forming the sequence 2, 3, 5, 11, 17, 19, 23, 29, 37, 41, 47, 53, ...
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
(also written as 0. 9, 0.., or 0.(9)) is a repeating decimal that is an alternate way of writing the number 1. Following the standard rules for representing numbers in decimal notation, its value is the smallest number greater than or equal to every number in the sequence 0.9, 0.99, 0.999, .... It can be proved that this number is 1; that is,
A vinculum can indicate a line segment where A and B are the endpoints: ¯. A vinculum can indicate the repetend of a repeating decimal value: . 1 ⁄ 7 = 0. 142857 = 0.1428571428571428571...