Ad
related to: draw the zener equivalent circuit
Search results
Results From The WOW.Com Content Network
A subsurface Zener diode, also called a buried Zener, is a device similar to the surface Zener, but the doping and design is such that the avalanche region is located deeper in the structure, typically several micrometers below the oxide. Hot carriers then lose energy by collisions with the semiconductor lattice before reaching the oxide layer ...
A Zener diode, when reverse biased (as shown in the circuit) has a constant voltage drop across it irrespective of the current flowing through it. Thus, as long as the Zener current (I Z) is above a certain level (called holding current), the voltage across the Zener diode (V Z) will be constant.
Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis. [1] In its most common form, an equivalent circuit is made up of linear, passive elements. However, more complex equivalent circuits are used that approximate the nonlinear behavior of ...
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
English: The circuit diagram symbol for a Zener diode. When used in a circuit diagram, the words "Anode" and "Cathode" are not included with the graphic symbol. (Revised to conform to ANSI Y32.2-1975 and IEEE-Std. 315-1975.)
The points where the characteristic curve and the load line intersect are the possible operating point(s) of the circuit; at these points the current and voltage parameters of both parts of the circuit match. [1] The example at right shows how a load line is used to determine the current and voltage in a simple diode circuit.
A Zener diode contains a heavily doped p–n junction allowing electrons to tunnel from the valence band of the p-type material to the conduction band of the n-type material, such that the reverse voltage is "clamped" to a known value (called the Zener voltage), and avalanche does not occur. Both devices, however, do have a limit to the maximum ...
Electrically, these devices resemble Zener diodes, with the following major differences: They rely on gas ionization, rather than Zener breakdown; The unregulated supply voltage must be 15–20% above the nominal output voltage to ensure that the discharge starts; The output can be higher than nominal if the current through the tube is too low.