Search results
Results From The WOW.Com Content Network
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.
In mathematical complex analysis, a quasiconformal mapping, introduced by Grötzsch (1928) and named by Ahlfors (1935), is a (weakly differentiable) homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded eccentricity.
For example, the term "map" is often reserved for a "function" with some sort of special structure (e.g. maps of manifolds). In particular map may be used in place of homomorphism for the sake of succinctness (e.g., linear map or map from G to H instead of group homomorphism from G to H).
Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, for any nonnegative integer , a multilinear map of k variables is called a k-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form.
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
Interpretation for surjective functions in the Cartesian plane, defined by the mapping f : X → Y, where y = f(x), X = domain of function, Y = range of function. Every element in the range is mapped onto from an element in the domain, by the rule f. There may be a number of domain elements which map to the same range element.