Search results
Results From The WOW.Com Content Network
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols ∇ ⋅ ∇ {\displaystyle \nabla \cdot \nabla } , ∇ 2 {\displaystyle \nabla ^{2}} (where ∇ {\displaystyle \nabla } is the nabla operator ), or Δ ...
In special relativity, electromagnetism and wave theory, the d'Alembert operator (denoted by a box: ), also called the d'Alembertian, wave operator, box operator or sometimes quabla operator [1] (cf. nabla symbol ) is the Laplace operator of Minkowski space .
The connection Laplacian, also known as the rough Laplacian, is a differential operator acting on the various tensor bundles of a manifold, defined in terms of a Riemannian- or pseudo-Riemannian metric. When applied to functions (i.e. tensors of rank 0), the connection Laplacian is often called the Laplace–Beltrami operator.
When computing the Laplace–de Rham operator on a scalar function f, we have δf = 0, so that =. Up to an overall sign, the Laplace–de Rham operator is equivalent to the previous definition of the Laplace–Beltrami operator when acting on a scalar function; see the proof for details.
L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
Gradient, divergence, Laplace–Beltrami operator [ edit ] The gradient of a function ϕ {\displaystyle \phi } is obtained by raising the index of the differential ∂ i ϕ d x i {\displaystyle \partial _{i}\phi dx^{i}} , whose components are given by:
Laplace operator, a differential operator often denoted by the symbol ∇ 2; Hessian matrix, sometimes denoted by ∇ 2; Aitken's delta-squared process, a numerical analysis technique used for accelerating the rate of convergence of a sequence