Search results
Results From The WOW.Com Content Network
The definition of "unimodal" was extended to functions of real numbers as well. A common definition is as follows: a function f(x) is a unimodal function if for some value m, it is monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m. In that case, the maximum value of f(x) is f(m) and there are no other local maxima.
The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...
Such a continuous distribution is called multimodal (as opposed to unimodal). In symmetric unimodal distributions, such as the normal distribution, the mean (if defined), median and mode all coincide. For samples, if it is known that they are drawn from a symmetric unimodal distribution, the sample mean can be used as an estimate of the ...
Similarly, we can make the sequence positively skewed by adding a value far above the mean, which is probably a positive outlier, e.g. (49, 50, 51, 60), where the mean is 52.5, and the median is 50.5. As mentioned earlier, a unimodal distribution with zero value of skewness does not imply that this distribution is symmetric necessarily.
A function is unimodal if it is monotonically increasing up to some point (the mode) and then monotonically decreasing. When f {\displaystyle f} is a strictly monotonic function, then f {\displaystyle f} is injective on its domain, and if T {\displaystyle T} is the range of f {\displaystyle f} , then there is an inverse function on T ...
A non-example: a unimodal distribution, that would become multimodal if conditioned on either x or y. In statistics , a multimodal distribution is a probability distribution with more than one mode (i.e., more than one local peak of the distribution).
The theorem refines Chebyshev's inequality by including the factor of 4/9, made possible by the condition that the distribution be unimodal. It is common, in the construction of control charts and other statistical heuristics, to set λ = 3 , corresponding to an upper probability bound of 4/81= 0.04938..., and to construct 3-sigma limits to ...
In the context of human–computer interaction, a modality is the classification of a single independent channel of input/output between a computer and a human. Such channels may differ based on sensory nature (e.g., visual vs. auditory), [1] or other significant differences in processing (e.g., text vs. image). [2]