Search results
Results From The WOW.Com Content Network
The total resistance is the sum of the individual resistances, as expressed by the following equation: R total = R artery + R arterioles + R capillaries. The largest proportion of resistance in this series is contributed by the arterioles. [3] Parallel resistance is illustrated by the circulatory system.
This is a particularly important transform for finding equivalent impedances. Its importance arises from the fact that the total impedance between two terminals cannot be determined solely by calculating series and parallel combinations except for a certain restricted class of network. In the general case additional transformations are required.
Figure 1: Schematic of an electrical circuit illustrating current division. Notation R T refers to the total resistance of the circuit to the right of resistor R X.. In electronics, a current divider is a simple linear circuit that produces an output current (I X) that is a fraction of its input current (I T).
The Norton resistance R no is found by calculating the output voltage V o produced at A and B with no resistance or load connected to, then R no = V o / I no; equivalently, this is the resistance between the terminals with all (independent) voltage sources short-circuited and independent current sources open-circuited (i.e., each independent ...
The resistance is measured after replacing all voltage- and current-sources with their internal resistances. That means an ideal voltage source is replaced with a short circuit, and an ideal current source is replaced with an open circuit. Resistance can then be calculated across the terminals using the formulae for series and parallel circuits ...
In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel .
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
The simplest non-ideal current source consists of a voltage source in series with a resistor. The amount of current available from such a source is given by the ratio of the voltage across the voltage source to the resistance of the resistor (Ohm's law; I = V/R).