When.com Web Search

  1. Ads

    related to: euler's formula for polyhedrons worksheet free download

Search results

  1. Results From The WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    This equation, stated by Euler in 1758, [2] is known as Euler's polyhedron formula. [3] It corresponds to the Euler characteristic of the sphere (i.e. χ = 2 {\displaystyle \ \chi =2\ } ), and applies identically to spherical polyhedra .

  3. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analogue of Euler's polyhedral formula: + = where N k denotes the number of k-faces in the polytope (a vertex is a 0-face, an edge is a 1-face, etc.).

  4. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    From the fact that each facet of a three-dimensional polyhedron has at least three edges, it follows by double counting that 2e ≥ 3f, and using this inequality to eliminate e and f from Euler's formula leads to the further inequalities e ≤ 3v − 6 and f ≤ 2v − 4. By duality, e ≤ 3f − 6 and v ≤ 2f − 4.

  5. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    The five Platonic solids have an Euler characteristic of 2. This simply reflects that the surface is a topological 2-sphere, and so is also true, for example, of any polyhedron which is star-shaped with respect to some interior point.

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  7. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    In geometry, a 4-polytope (sometimes also called a polychoron, [1] polycell, or polyhedroid) is a four-dimensional polytope. [2] [3] It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (), and cells ().

  8. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    A consequence of Euler's polyhedron formula is that a Goldberg polyhedron always has exactly 12 pentagonal faces. Icosahedral symmetry ensures that the pentagons are always regular and that there are always 12 of them. If the vertices are not constrained to a sphere, the polyhedron can be constructed with planar equilateral (but not in general ...

  9. Kepler–Poinsot polyhedron - Wikipedia

    en.wikipedia.org/wiki/Kepler–Poinsot_polyhedron

    A modified form of Euler's formula, using density (D) of the vertex figures and faces was given by Arthur Cayley, and holds both for convex polyhedra (where the correction factors are all 1), and the Kepler–Poinsot polyhedra: + =.