When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    However, there is a second definition of an irrational number used in constructive mathematics, that a real number is an irrational number if it is apart from every rational number, or equivalently, if the distance | | between and every rational number is positive. This definition is stronger than the traditional definition of an irrational number.

  3. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  4. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    Abu Kamil was the first mathematician to introduce irrational numbers as valid solutions to quadratic equations. [2] [3] Quadratic irrationals are used in field theory to construct field extensions of the field of rational numbers Q. Given the square-free integer c, the augmentation of Q by quadratic irrationals using √ c produces a quadratic ...

  5. Schizophrenic number - Wikipedia

    en.wikipedia.org/wiki/Schizophrenic_number

    An informal name for an irrational number that displays such persistent patterns in its decimal expansion, that it has the appearance of a rational number. A schizophrenic number can be obtained as follows. For any positive integer n, let f (n) denote the integer given by the recurrence f (n) = 10 f (n − 1) + n with the initial value f(0

  6. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    Gerard of Cremona (c. 1150), Fibonacci (1202), and then Robert Recorde (1551) all used the term to refer to unresolved irrational roots, that is, expressions of the form , in which and are integer numerals and the whole expression denotes an irrational number. [6] Irrational numbers of the form , where is rational, are called pure quadratic ...

  7. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.

  8. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  9. Commensurability (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Commensurability_(mathematics)

    Example: Let a and b be nonzero real numbers. Then the subgroup of the real numbers R generated by a is commensurable with the subgroup generated by b if and only if the real numbers a and b are commensurable, in the sense that a/b is rational. Thus the group-theoretic notion of commensurability generalizes the concept for real numbers.