Search results
Results From The WOW.Com Content Network
The non-vertical case has equation y = mx + n, where m and are real numbers. All three types of asymptotes can be present at the same time in specific examples. Unlike asymptotes for curves that are graphs of functions, a general curve may have more than two non-vertical asymptotes, and may cross its vertical asymptotes more than once.
The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation = In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length
The asymptotic directions are the same as the asymptotes of the hyperbola of the Dupin indicatrix through a hyperbolic point, or the unique asymptote through a parabolic point. [1] An asymptotic direction is a direction along which the normal curvature is zero: take the plane spanned by the direction and the surface's normal at that point. The ...
Also determine from which side the curve approaches the asymptotes and where the asymptotes intersect the curve. [1] Equate first and second derivatives to 0 to find the stationary points and inflection points respectively. If the equation of the curve cannot be solved explicitly for x or y, finding these derivatives requires implicit ...
In general, every implicit curve is defined by an equation of the form (,) = for some function F of two variables. Hence an implicit curve can be considered as the set of zeros of a function of two variables. Implicit means that the equation is not expressed as a solution for either x in terms of y or vice versa.
Cissoid of Diocles traced by points M with ¯ = ¯ Animation visualizing the Cissoid of Diocles. In geometry, the cissoid of Diocles (from Ancient Greek κισσοειδής (kissoeidēs) 'ivy-shaped'; named for Diocles) is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio.
In mathematics, the method of matched asymptotic expansions [1] is a common approach to finding an accurate approximation to the solution to an equation, or system of equations. It is particularly used when solving singularly perturbed differential equations. It involves finding several different approximate solutions, each of which is valid (i ...
The Cartesian equation is = / (+). The curve resembles the Folium of Descartes [1] and the line x = –a is an asymptote to two branches. The curve has two more asymptotes, in the plane with complex coordinates, given by =.