When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 180 (number) - Wikipedia

    en.wikipedia.org/wiki/180_(number)

    180 is the sum of two square numbers: 12 2 + 6 2. It can be expressed as either the sum of six consecutive prime numbers: 19 + 23 + 29 + 31 + 37 + 41, or the sum of eight consecutive prime numbers: 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37. 180 is an Ulam number, which can be expressed as a sum of earlier terms in the Ulam sequence only as 177 + 3. [6]

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 (since p = p 1). The multiplicity of a prime which does not divide n may be called 0 or may be considered undefined.

  4. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    As a result, there is a one-to-one correspondence between Mersenne primes and even perfect numbers, so a list of one can be converted into a list of the other. [ 1 ] [ 5 ] [ 6 ] It is currently an open problem whether there are infinitely many Mersenne primes and even perfect numbers.

  5. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    180: 60 × 168 63 × 160 70 × 144 ... Any factor of n must have the same or lesser multiplicity in each prime: ... and 36 are the only square highly composite numbers.

  6. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.

  7. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid's Elements.. If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers.

  8. Perfect square - Wikipedia

    en.wikipedia.org/wiki/Perfect_square

    A perfect square is an element of algebraic structure that is equal to the square of another element. ... Perfect square trinomials, a method of factoring polynomials

  9. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...