When.com Web Search

  1. Ad

    related to: volume of a sphere equation

Search results

  1. Results From The WOW.Com Content Network
  2. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    Another approach to obtaining the formula comes from the fact that it equals the derivative of the formula for the volume with respect to r because the total volume inside a sphere of radius r can be thought of as the summation of the surface area of an infinite number of spherical shells of infinitesimal thickness concentrically stacked inside ...

  3. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    If sphere 2 is very large such that , hence and , which is the case for a spherical cap with a base that has a negligible curvature, the above equation is equal to the volume of a spherical cap with a flat base, as expected.

  4. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 (r) is the surface area of an (n − 1)-sphere of radius r, then: = (). Applying this to the above integral gives the expression

  5. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The formula for the volume of the ⁠ ⁠-ball can be derived from this by integration. Similarly the surface area element of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ -sphere of radius ⁠ r {\displaystyle r} ⁠ , which generalizes the area element of the ⁠ 2 {\displaystyle 2} ⁠ -sphere, is given by

  6. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),

  7. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    On the Sphere and Cylinder (Greek: Περὶ σφαίρας καὶ κυλίνδρου) is a treatise that was published by Archimedes in two volumes c. 225 BCE. [1] It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values for a cylinder, and was the first to do so. [2]

  8. Spherical segment - Wikipedia

    en.wikipedia.org/wiki/Spherical_segment

    Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.

  9. Spherical shell - Wikipedia

    en.wikipedia.org/wiki/Spherical_shell

    An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}