Search results
Results From The WOW.Com Content Network
Congruences of squares are extremely useful in integer factorization algorithms. Conversely, because finding square roots modulo a composite number turns out to be probabilistic polynomial-time equivalent to factoring that number, any integer factorization algorithm can be used efficiently to identify a congruence of squares.
A congruent number is defined as the area of a right triangle with rational sides. Because every congruum can be obtained (using the parameterized solution) as the area of a Pythagorean triangle, it follows that every congruum is congruent. Every congruent number is a congruum multiplied by the square of a rational number. [7]
Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...
Square packing in a square is the problem of determining the maximum number of unit squares (squares of side length one) that can be packed inside a larger square of side length . If a {\displaystyle a} is an integer , the answer is a 2 , {\displaystyle a^{2},} but the precise – or even asymptotic – amount of unfilled space for an arbitrary ...
if p ≡ 3 (mod 8), then p is not a congruent number, but 2 p is a congruent number. if p ≡ 5 (mod 8), then p is a congruent number. if p ≡ 7 (mod 8), then p and 2 p are congruent numbers. It is also known that in each of the congruence classes 5, 6, 7 (mod 8), for any given k there are infinitely many square-free congruent numbers with k ...
Any two pairs of angles are congruent, [4] which in Euclidean geometry implies that all three angles are congruent: [a] If ∠BAC is equal in measure to ∠B'A'C', and ∠ABC is equal in measure to ∠A'B'C', then this implies that ∠ACB is equal in measure to ∠A'C'B' and the triangles are similar. All the corresponding sides are ...
However, there are three distinct ways of partitioning a square into three similar rectangles: [1] [2] The trivial solution given by three congruent rectangles with aspect ratio 3:1. The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ...
Congruence of squares, in number theory, a congruence commonly used in integer factorization algorithms Matrix congruence , an equivalence relation between two matrices Congruence (manifolds) , in the theory of smooth manifolds, the set of integral curves defined by a nonvanishing vector field defined on the manifold