Search results
Results From The WOW.Com Content Network
A 1 receptors are implicated in sleep promotion by inhibiting wake-promoting cholinergic neurons in the basal forebrain. [6] A 1 receptors are also present in smooth muscle throughout the vascular system. [7] The adenosine A 1 receptor has been found to be ubiquitous throughout the entire body. [citation needed]
Caffeine keeps you awake by blocking adenosine receptors. Each type of adenosine receptor has different functions, although with some overlap. [3] For instance, both A 1 receptors and A 2A play roles in the heart, regulating myocardial oxygen consumption and coronary blood flow, while the A 2A receptor also has broader anti-inflammatory effects throughout the body. [4]
The activation of the adenosine A1 receptor is required for osteoclast differentiation and function, whereas the activation of the adenosine A2A receptor inhibits osteoclast function. The other three adenosine receptors are involved in bone formation.
A mediating agent is released or generated as a function of changes in luminal NaCl concentration. The size of the TGF response is directly dependent upon these changes. "In part because of the striking effect of deletion of A1 adenosine receptors (A1AR), adenosine generated from released ATP has been proposed as the critical TGF mediator. [6]
Fatigue and sedation after heavy exertion can be caused by excess adenosine in the cells which signals muscle fiber to feel fatigued. In the brain, excess adenosine decreases alertness and causes sleepiness. In this way, adenosine may play a role in fatigue from MADD. [4] Recovery from over-exertion can be hours, days or even months.
P2Y 12 is a chemoreceptor for adenosine diphosphate (ADP) [5] [6] that belongs to the G i class of a group of G protein-coupled (GPCR) purinergic receptors. [7] This P2Y receptor family has several receptor subtypes with different pharmacological selectivity, which overlaps in some cases, for various adenosine and uridine nucleotides.
This gene encodes the enzyme responsible for pre-mRNA editing of the glutamate receptor subunit B by site-specific deamination of adenosines.Studies in rats found that this enzyme acted on its own pre-mRNA molecules to convert an AA dinucleotide to an AI dinucleotide which resulted in a new splice site.
Receptor for complement (C3d) and Epstein–Barr virus (EBV). CD22: a sugar binding transmembrane protein that specifically binds sialic acid with an immunoglobulin (Ig) domain located at its N-terminus. It is a member of the immunoglobulin superfamily and the SIGLEC family. CD22 functions as an inhibitory receptor for B cell receptor (BCR ...