Search results
Results From The WOW.Com Content Network
A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex that is not contained in the base. A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the apex, to all of the points on a base. In the ...
In all of the following nose cone shape equations, L is the overall length of the nose cone and R is the radius of the base of the nose cone. y is the radius at any point x, as x varies from 0, at the tip of the nose cone, to L. The equations define the two-dimensional profile of the nose shape.
The cone over a closed interval I of the real line is a filled-in triangle (with one of the edges being I), otherwise known as a 2-simplex (see the final example). The cone over a polygon P is a pyramid with base P. The cone over a disk is the solid cone of classical geometry (hence the concept's name). The cone over a circle given by
A net = is said to be frequently or cofinally in if for every there exists some such that and . [5] A point is said to be an accumulation point or cluster point of a net if for every neighborhood of , the net is frequently/cofinally in . [5] In fact, is a cluster point if and only if it has a subnet that converges to . [6] The set of all ...
In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal. A right frustum is a right pyramid or a right cone truncated perpendicularly to its axis; [3] otherwise, it is an oblique frustum. In a truncated cone or truncated pyramid, the truncation plane is not necessarily
These two bits of data, a direction and a magnitude, thus determine a tangent vector at the base point. The map from tangent vectors to endpoints smoothly sweeps out a neighbourhood of the base point and defines what is called the exponential map, defining a local coordinate chart at that base point. The neighbourhood swept out has similar ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A subset of a vector space over an ordered field is a cone (or sometimes called a linear cone) if for each in and positive scalar in , the product is in . [2] Note that some authors define cone with the scalar ranging over all non-negative scalars (rather than all positive scalars, which does not include 0). [3]