Search results
Results From The WOW.Com Content Network
For example, consider variables a, b and c of some user-defined type, such as matrices: a + b * c. In a language that supports operator overloading, and with the usual assumption that the '*' operator has higher precedence than the '+' operator, this is a concise way of writing: Add(a, Multiply(b, c))
For example, to have a derived class with an overloaded function taking a double or an int, using the function taking an int from the base class, in C++, one would write: class B { public : void F ( int i ); }; class D : public B { public : using B :: F ; void F ( double d ); };
C++ does not have the keyword super that a subclass can use in Java to invoke the superclass version of a method that it wants to override. Instead, the name of the parent or base class is used followed by the scope resolution operator. For example, the following code presents two classes, the base class Rectangle, and the derived class Box.
Polymorphism can be distinguished by when the implementation is selected: statically (at compile time) or dynamically (at run time, typically via a virtual function). This is known respectively as static dispatch and dynamic dispatch, and the corresponding forms of polymorphism are accordingly called static polymorphism and dynamic polymorphism.
The problem is that, while virtual functions are dispatched dynamically in C++, function overloading is done statically. The problem described above can be resolved by simulating double dispatch, for example by using a visitor pattern. Suppose the existing code is extended so that both SpaceShip and ApolloSpacecraft are given the function
Duck typing is similar to, but distinct from, structural typing.Structural typing is a static typing system that determines type compatibility and equivalence by a type's structure, whereas duck typing is dynamic and determines type compatibility by only that part of a type's structure that is accessed during runtime.
Multiple dispatch can be added to Python using a library extension. For example, using the module multimethod.py [13] and also with the module multimethods.py [14] which provides CLOS-style multimethods for Python without changing the underlying syntax or keywords of the language.
Although pure virtual methods typically have no implementation in the class that declares them, pure virtual methods in some languages (e.g. C++ and Python) are permitted to contain an implementation in their declaring class, providing fallback or default behaviour that a derived class can delegate to, if appropriate. [5] [6]