When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    For two polyhedra with the same combinatorial type (that is, the same number E of edges, the same number of faces, and the same number of sides on corresponding faces), there exists a set of E measurements that can establish whether or not the polyhedra are congruent.

  3. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.

  4. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Dual polyhedra exist in pairs, and the dual of a dual is just the original polyhedron again. Some polyhedra are self-dual, meaning that the dual of the polyhedron is congruent to the original polyhedron. [35] Abstract polyhedra also have duals, obtained by reversing the partial order defining the polyhedron to obtain its dual or opposite order ...

  5. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  6. Regular polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_polytope

    At the start of the 20th century, the definition of a regular polytope was as follows. A regular polygon is a polygon whose edges are all equal and whose angles are all equal. A regular polyhedron is a polyhedron whose faces are all congruent regular polygons, and whose vertex figures are all congruent and regular.

  7. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2] This set of polyhedrons is named after Plato.

  8. Isohedral figure - Wikipedia

    en.wikipedia.org/wiki/Isohedral_figure

    A facet-transitive or isotopic figure is an n-dimensional polytope or honeycomb with its facets ((n−1)-faces) congruent and transitive. The dual of an isotope is an isogonal polytope. By definition, this isotopic property is common to the duals of the uniform polytopes. An isotopic 2-dimensional figure is isotoxal, i.e. edge-transitive.

  9. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.