When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  3. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    In the case of water, with its 104.5° HOH angle, the OH bonding orbitals are constructed from O(~sp 4.0) orbitals (~20% s, ~80% p), while the lone pairs consist of O(~sp 2.3) orbitals (~30% s, ~70% p). As discussed in the justification above, the lone pairs behave as very electropositive substituents and have excess s character.

  4. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    See illustration of a cross-section of these nested shells, at right. The s orbitals for all n numbers are the only orbitals with an anti-node (a region of high wave function density) at the center of the nucleus. All other orbitals (p, d, f, etc.) have angular momentum, and thus avoid the nucleus (having a wave node at the nucleus).

  5. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Chemist Linus Pauling first developed the hybridisation theory in 1931 to explain the structure of simple molecules such as methane (CH 4) using atomic orbitals. [2] Pauling pointed out that a carbon atom forms four bonds by using one s and three p orbitals, so that "it might be inferred" that a carbon atom would form three bonds at right angles (using p orbitals) and a fourth weaker bond ...

  6. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    Since the nature of the overlapping orbitals are different in H 2 and F 2 molecules, the bond strength and bond lengths differ between H 2 and F 2 molecules. In methane (CH 4 ), the carbon atom undergoes sp 3 hybridization, allowing it to form four equivalent sigma bonds with hydrogen atoms, resulting in a tetrahedral geometry.

  7. Sigma-pi and equivalent-orbital models - Wikipedia

    en.wikipedia.org/wiki/Sigma-pi_and_equivalent...

    For the hydrogen fluoride molecule, for example, two F lone pairs are essentially unhybridized p orbitals of π symmetry, while the other is an sp x hydrid orbital of σ symmetry. An analogous consideration applies to water (one O lone pair is in a pure p orbital, another is in an sp x hybrid orbital).

  8. Block (periodic table) - Wikipedia

    en.wikipedia.org/wiki/Block_(periodic_table)

    The block names (s, p, d, and f) are derived from the spectroscopic notation for the value of an electron's azimuthal quantum number: sharp (0), principal (1), diffuse (2), and fundamental (3). Succeeding notations proceed in alphabetical order, as g, h, etc., though elements that would belong in such blocks have not yet been found.

  9. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    In the usual analysis, the p-orbitals of the metal are used for σ bonding (and have the wrong symmetry to overlap with the ligand p or π or π * orbitals anyway), so the π interactions take place with the appropriate metal d-orbitals, i.e. d xy, d xz and d yz. These are the orbitals that are non-bonding when only σ bonding takes place.