Search results
Results From The WOW.Com Content Network
This section illustrates the central limit theorem via an example for which the computation can be done quickly by hand on paper, unlike the more computing-intensive example of the previous section. Sum of all permutations of length 1 selected from the set of integers 1, 2, 3
An important example of a log-concave density is a function constant inside a given convex body and vanishing outside; it corresponds to the uniform distribution on the convex body, which explains the term "central limit theorem for convex bodies".
Galton box A Galton box demonstrated. The Galton board, also known as the Galton box or quincunx or bean machine (or incorrectly Dalton board), is a device invented by Francis Galton [1] to demonstrate the central limit theorem, in particular that with sufficient sample size the binomial distribution approximates a normal distribution.
Directional statistics is the subdiscipline of statistics that deals with directions (unit vectors in R n), axes (lines through the origin in R n) or rotations in R n. The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics. [2]
Cayley's theorem (group theory) Central limit theorem (probability) Cesàro's theorem (real analysis) Ceva's theorem ; Chasles' theorem, Chasles' theorem ; Chasles' theorem (algebraic geometry) Chebotarev's density theorem (number theory) Chen's theorem (number theory) Cheng's eigenvalue comparison theorem (Riemannian geometry)
In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.
The central limit theorem gives only an asymptotic distribution. As an approximation for a finite number of observations, it provides a reasonable approximation only when close to the peak of the normal distribution; it requires a very large number of observations to stretch into the tails.
The Markov chain central limit theorem can be guaranteed for functionals of general state space Markov chains under certain conditions. In particular, this can be done with a focus on Monte Carlo settings. An example of the application in a MCMC (Markov Chain Monte Carlo) setting is the following: Consider a simple hard spheres model on a grid.