Search results
Results From The WOW.Com Content Network
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data." [3] Exploratory data ...
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Pages in category "Exploratory data analysis" The following 13 pages are in this category, out of 13 total. This list may not reflect recent changes. ...
Exploratory Factor Analysis Model. In multivariate statistics, exploratory factor analysis (EFA) is a statistical method used to uncover the underlying structure of a relatively large set of variables. EFA is a technique within factor analysis whose overarching goal is to identify the underlying relationships between measured variables. [1]
Data exploration is an approach similar to initial data analysis, whereby a data analyst uses visual exploration to understand what is in a dataset and the characteristics of the data, rather than through traditional data management systems. [1]
Extrapolation domain analysis (EDA) is a methodology for identifying geographical areas that seem suitable for adoption of innovative ecosystem management practices on the basis of sites exhibiting similarity in conditions such as climatic, land use and socioeconomic indicators. Whilst it has been applied to water research projects in nine ...
Causal analysis is the field of experimental design and statistical analysis pertaining to establishing cause and effect. [1] [2] Exploratory causal analysis (ECA), also known as data causality or causal discovery [3] is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions.
Data envelopment analysis (DEA) is a nonparametric method in operations research and economics for the estimation of production frontiers. [1] DEA has been applied in a large range of fields including international banking, economic sustainability, police department operations, and logistical applications [2] [3] [4] Additionally, DEA has been used to assess the performance of natural language ...