When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Normal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_(geometry)

    In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point. A normal vector of length one is called a unit normal vector.

  3. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The curve of the chains of a suspension bridge is always an intermediate curve between a parabola and a catenary, but in practice the curve is generally nearer to a parabola due to the weight of the load (i.e. the road) being much larger than the cables themselves, and in calculations the second-degree polynomial formula of a parabola is used.

  4. Method of normals - Wikipedia

    en.wikipedia.org/wiki/Method_of_normals

    The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would construct a circle that was tangent to a given curve. He could then use the radius at the point of intersection to find the slope of a normal line, and from this one can easily find the slope of a tangent line.

  5. Hesse normal form - Wikipedia

    en.wikipedia.org/wiki/Hesse_normal_form

    Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue. In analytic geometry, the Hesse normal form (named after Otto Hesse) is an equation used to describe a line in the Euclidean plane, a plane in Euclidean space, or a hyperplane in higher dimensions.

  6. Distance from a point to a line - Wikipedia

    en.wikipedia.org/.../Distance_from_a_point_to_a_line

    The equation of the normal of that line which passes through the point P is given = +. The point at which these two lines intersect is the closest point on the original line to the point P. Hence: + = +. We can solve this equation for x,

  7. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  8. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The circle S and the curve C have the common tangent line at P, and therefore the common normal line. Close to P, the distance between the points of the curve C and the circle S in the normal direction decays as the cube or a higher power of the distance to P in the tangential direction.

  9. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...