When.com Web Search

  1. Ad

    related to: problem solving involving perimeter and area

Search results

  1. Results From The WOW.Com Content Network
  2. Isoperimetric inequality - Wikipedia

    en.wikipedia.org/wiki/Isoperimetric_inequality

    If a region is not convex, a "dent" in its boundary can be "flipped" to increase the area of the region while keeping the perimeter unchanged. An elongated shape can be made more round while keeping its perimeter fixed and increasing its area. The classical isoperimetric problem dates back to antiquity. [2]

  3. Goat grazing problem - Wikipedia

    en.wikipedia.org/wiki/Goat_grazing_problem

    The goat problems do not yield any new mathematical insights; rather they are primarily exercises in how to artfully deconstruct problems in order to facilitate solution. Three-dimensional analogues and planar boundary/area problems on other shapes, including the obvious rectangular barn and/or field, have been proposed and solved. [1]

  4. Napkin folding problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_folding_problem

    The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis napkin problem , suggesting it is due to Grigory Margulis , and the Arnold's rouble problem referring ...

  5. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  6. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.

  7. Heilbronn triangle problem - Wikipedia

    en.wikipedia.org/wiki/Heilbronn_triangle_problem

    The Heilbronn triangle problem concerns the placement of points within a shape in the plane, such as the unit square or the unit disk, for a given number . Each triple of points form the three vertices of a triangle, and among these triangles, the problem concerns the smallest triangle, as measured by area.

  8. A College Student Just Solved a Notoriously Impossible Math ...

    www.aol.com/college-student-just-solved...

    For premium support please call: 800-290-4726 more ways to reach us

  9. Moving sofa problem - Wikipedia

    en.wikipedia.org/wiki/Moving_sofa_problem

    The area thus obtained is referred to as the sofa constant. The exact value of the sofa constant is an open problem. The leading solution, by Joseph L. Gerver, has a value of approximately 2.2195. In November 2024, Jineon Baek posted an arXiv preprint claiming that Gerver's value is optimal, which if true, would solve the moving sofa problem. [2]