Ad
related to: problem solving involving perimeter and width
Search results
Results From The WOW.Com Content Network
The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis napkin problem , suggesting it is due to Grigory Margulis , and the Arnold's rouble problem referring ...
The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary has a specified length. [1] The closely related Dido's problem asks for a region of the maximal area bounded by a straight line and a curvilinear arc whose endpoints belong to that line.
In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, etc. of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is ...
In probability theory, Buffon's needle problem is a question first posed in the 18th century by Georges-Louis Leclerc, Comte de Buffon: [1] Suppose we have a floor made of parallel strips of wood , each the same width, and we drop a needle onto the floor.
The problem remains open, but over a sequence of papers researchers have tightened the gap between the known lower and upper bounds. In particular, Norwood & Poole (2003) constructed a (nonconvex) universal cover and showed that the minimum shape has area at most 0.260437; Gerriets & Poole (1974) and Norwood, Poole & Laidacker (1992) gave ...
The problem may be reduced to the quartic equation x 3 (x − c) − 1 = 0, which can be solved by approximation methods, as suggested by Gardner, or the quartic may be solved in closed form by Ferrari's method. Once x is obtained, the width of the alley is readily calculated. A derivation of the quartic is given below, along with the desired ...
A college student just solved a seemingly paradoxical math problem—and the answer came from an incredibly unlikely place. Skip to main content. 24/7 Help. For premium support please call: 800 ...
According to Eutocius, Archytas was the first to solve the problem of doubling the cube (the so-called Delian problem) with an ingenious geometric construction. [ 2 ] [ 3 ] [ 4 ] The nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837.