Search results
Results From The WOW.Com Content Network
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy . [ 2 ]
Uniparental inheritance occurs in extranuclear genes when only one parent contributes organellar DNA to the offspring. A classic example of uniparental gene transmission is the maternal inheritance of human mitochondria. The mother's mitochondria are transmitted to the offspring at fertilization via the egg. The father's mitochondrial genes are ...
A plant cell which contains chloroplasts is known as a chlorenchyma cell. A typical chlorenchyma cell of a land plant contains about 10 to 100 chloroplasts. In some plants such as cacti, chloroplasts are found in the stems, [186] though in most plants, chloroplasts are concentrated in the leaves.
While not all eukaryotes have mitochondria or chloroplasts, mitochondria are found in most eukaryotes, and chloroplasts are found in all plants and algae. Photosynthesis and respiration are essentially the reverse of one another, and the advent of respiration coupled with photosynthesis enabled much greater access to energy than fermentation alone.
Plants and various groups of algae have plastids as well as mitochondria. Plastids, like mitochondria, have their own DNA and are developed from endosymbionts , in this case cyanobacteria . They usually take the form of chloroplasts which, like cyanobacteria, contain chlorophyll and produce organic compounds (such as glucose ) through ...
This is because the smaller plants do not have enough volume to create a considerable amount of heat. Large plants, on the other hand, have a lot of mass to create and retain heat. [5] Thermogenic plants are also protogynous, meaning that the female part of the plant matures before the male part of the same plant. This reduces inbreeding ...
Including one H + for the transport reactions, this means that synthesis of one ATP requires 1 + 10/3 = 4.33 protons in yeast and 1 + 8/3 = 3.67 in vertebrates. This would imply that in human mitochondria the 10 protons from oxidizing NADH would produce 2.72 ATP (instead of 2.5) and the 6 protons from oxidizing succinate or ubiquinol would ...
In animals, mitochondria are the only organelles that contain their own genomes, so these organisms will only have mitochondrial heteroplasmy. In contrast, photosynthetic plants contain mitochondria and chloroplasts, each of which contains plastid genomes. Therefore, plant heteroplasmy occurs in two dimensions. [4]