Search results
Results From The WOW.Com Content Network
The shallow-water equations (SWE) are a set of hyperbolic partial differential equations (or parabolic if viscous shear is considered) that describe the flow below a pressure surface in a fluid (sometimes, but not necessarily, a free surface). [1]
Squat effect is approximately proportional to the square of the speed of the ship. Thus, by reducing speed by half, the squat effect is reduced by a factor of four. [2] Squat effect is usually felt more when the depth/draft ratio is less than four [2] or when sailing close to a bank. It can lead to unexpected groundings and handling difficulties.
The Penman equation describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is impractical, to give comparable results within specific contexts, e.g. humid vs ...
By measuring the level of water remaining in the vessel, the time can be measured with uniform graduation. This is an example of outflow clepsydra. Since the water outflow rate is higher when the water level is higher (due to more pressure), the fluid's volume should be more than a simple cylinder when the water level is high.
Tumlirz-Tammann-Tait equation of state based on fits to experimental data on pure water. A related equation of state that can be used to model liquids is the Tumlirz equation (sometimes called the Tammann equation and originally proposed by Tumlirz in 1909 and Tammann in 1911 for pure water). [4] [10] This relation has the form
The meter is "read" as a differential pressure head in cm or inches of water and is equivalent to the difference in velocity head. The dynamic pressure, along with the static pressure and the pressure due to elevation, is used in Bernoulli's principle as an energy balance on a closed system .
Vertical pressure variation is the variation in pressure as a function of elevation.Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects.
Cloth, treated to be hydrophobic, shows a high contact angle. The theoretical description of contact angle arises from the consideration of a thermodynamic equilibrium between the three phases: the liquid phase (L), the solid phase (S), and the gas or vapor phase (G) (which could be a mixture of ambient atmosphere and an equilibrium concentration of the liquid vapor).