Search results
Results From The WOW.Com Content Network
However, not all sets of four points, no three collinear, are linearly separable in two dimensions. The following example would need two straight lines and thus is not linearly separable: Notice that three points which are collinear and of the form "+ ⋅⋅⋅ — ⋅⋅⋅ +" are also not linearly separable.
then is called a separable state. Otherwise, is said to be an entangled state. From the Schmidt decomposition, we can see that is entangled if and only if has Schmidt rank strictly greater than 1. Therefore, two subsystems that partition a pure state are entangled if and only if their reduced states are mixed states.
Conversely, a metrizable space is separable if and only if it is second countable, which is the case if and only if it is Lindelöf. To further compare these two properties: An arbitrary subspace of a second-countable space is second countable; subspaces of separable spaces need not be separable (see below).
This equation is an equation only of y'' and y', meaning it is reducible to the general form described above and is, therefore, separable. Since it is a second-order separable equation, collect all x variables on one side and all y' variables on the other to get: (′) (′) =.
Separable. A space is separable if it has a countable dense subset. First-countable. A space is first-countable if every point has a countable local base. Second-countable. A space is second-countable if it has a countable base for its topology. Second-countable spaces are always separable, first-countable and Lindelöf. Lindelöf.
The notion of when two sets are separated or not is important both to the notion of connected spaces (and their connected components) as well as to the separation axioms for topological spaces. Separated sets should not be confused with separated spaces (defined below), which are somewhat related but different.
A space is separable if it has a countable dense set and hereditarily separable if every subspace is separable. It had been believed for a long time that S-space problem and L-space problem are dual, i.e. if there is an S-space in some model of set theory then there is an L-space in the same model and vice versa – which is not true.
Separable differential equation, in which separation of variables is achieved by various means; Separable extension, in field theory, an algebraic field extension; Separable filter, a product of two or more simple filters in image processing; Separable ordinary differential equation, a class of equations that can be separated into a pair of ...