When.com Web Search

  1. Ad

    related to: how to calculate kwh year to hour formula

Search results

  1. Results From The WOW.Com Content Network
  2. Kilowatt-hour - Wikipedia

    en.wikipedia.org/wiki/Kilowatt-hour

    Many compound units for various kinds of rates explicitly mention units of time to indicate a change over time. For example: miles per hour, kilometres per hour, dollars per hour. Power units, such as kW, already measure the rate of energy per unit time (kW=kJ/s). Kilowatt-hours are a product of power and time, not a rate of change of power ...

  3. Full load hour - Wikipedia

    en.wikipedia.org/wiki/Full_load_hour

    Full Load hour is a measure of the degree of utilisation of a technical system. [1] [2] [3] Full load hours refer to the time for which a plant would have to be operated at nominal power in order to convert the same amount of electrical work as the plant has actually converted within a defined period of time, during which breaks in operation or partial load operation can also occur.

  4. Miles per gallon gasoline equivalent - Wikipedia

    en.wikipedia.org/wiki/Miles_per_gallon_gasoline...

    The unit of energy consumed is deemed to be 33.7 kilowatt-hours without regard to the efficiency of conversion of heat energy into electrical energy, also measured in kilowatt-hours (kWh). The equivalence of this unit to energy in a gallon of gasoline is true if and only if the heat engine, generating equipment, and power delivery to the car ...

  5. Units of energy - Wikipedia

    en.wikipedia.org/wiki/Units_of_energy

    A unit of electrical energy, particularly for utility bills, is the kilowatt-hour (kWh); [3] one kilowatt-hour is equivalent to 3.6 megajoules. Electricity usage is often given in units of kilowatt-hours per year or other periods. [4] This is a measurement of average power consumption, meaning the average rate at which energy is transferred ...

  6. Seasonal energy efficiency ratio - Wikipedia

    en.wikipedia.org/wiki/Seasonal_energy_efficiency...

    (72,000 BTU/h) × (1000 h/year) × ($0.12/kW·h) ÷ (10 BTU/W·h) ÷ (1000 W/kW) = $860/year. Example 2. A residence near Chicago has an air conditioner with a cooling capacity of 4 tons and an SEER rating of 10. The unit is operated 120 days each year for 8 hours per day (960 hours per year), and the electric energy cost is $0.10 per kilowatt ...

  7. Heating degree day - Wikipedia

    en.wikipedia.org/wiki/Heating_degree_day

    As total energy consumption is in kilowatt hours and heating degree days are [no. days×degrees] we must convert watts per kelvin into kilowatt hours per degree per day by dividing by 1000 (to convert watts to kilowatts), and multiplying by 24 hours in a day (1 kW = 1 kW⋅h/h).

  8. Load factor (electrical) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(electrical)

    In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. [1] It is a measure of the utilization rate, or efficiency of electrical energy usage; a high load factor indicates that load is using the electric system more efficiently, whereas consumers or generators that underutilize the electric distribution will have a low load ...

  9. Watt - Wikipedia

    en.wikipedia.org/wiki/Watt

    One terawatt hour of energy is equal to a sustained power delivery of one terawatt for one hour, or approximately 114 megawatts for a period of one year: Power output = energy / time 1 terawatt hour per year = 1 × 10 12 W·h / (365 days × 24 hours per day) ≈ 114 million watts, equivalent to approximately 114 megawatts of constant power output.