When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weinstein–Aronszajn identity - Wikipedia

    en.wikipedia.org/wiki/Weinstein–Aronszajn_identity

    The identity may be proved as follows. [1] Let be a matrix consisting of the four blocks, , and : = (). Because I m is invertible, the formula for the determinant of a block matrix gives

  3. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1] [2] – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix.

  4. Gamma matrices - Wikipedia

    en.wikipedia.org/wiki/Gamma_matrices

    The defining property for the gamma matrices to generate a Clifford algebra is the anticommutation relation {,} = + = ,where the curly brackets {,} represent the anticommutator, is the Minkowski metric with signature (+ − − −), and is the 4 × 4 identity matrix.

  5. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    The th column of an identity matrix is the unit vector, a vector whose th entry is 1 and 0 elsewhere. The determinant of the identity matrix is 1, and its trace is . The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that:

  6. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of , evaluated at the identity matrix, is equal to the trace.The differential ′ is a linear operator that maps an n × n matrix to a real number.

  7. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.

  8. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The resulting identity is one of the most commonly used in mathematics. Among many uses, it gives a simple proof of the AM–GM inequality in two variables. The proof holds in any commutative ring. Conversely, if this identity holds in a ring R for all pairs of elements a and b, then R is commutative. To see this, apply the distributive law to ...

  9. Schwartz–Zippel lemma - Wikipedia

    en.wikipedia.org/wiki/Schwartz–Zippel_lemma

    Theorem 2 : A Tutte matrix determinant is not a 0-polynomial if and only if there exists a perfect matching. A subset D of E is called a matching if each vertex in V is incident with at most one edge in D. A matching is perfect if each vertex in V has exactly one edge that is incident to it in D. Create a Tutte matrix A in the following way: