Search results
Results From The WOW.Com Content Network
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.
Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [ 2 ]
One method conjectured by Good and Hardin is =, where is the sample size, is the number of independent variables and is the number of observations needed to reach the desired precision if the model had only one independent variable. [24] For example, a researcher is building a linear regression model using a dataset that contains 1000 patients ().
The goal of logistic regression is to use the dataset to create a predictive model of the outcome variable. As in linear regression, the outcome variables Y i are assumed to depend on the explanatory variables x 1,i... x m,i. Explanatory variables. The explanatory variables may be of any type: real-valued, binary, categorical, etc.
Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions. The boundaries between the segments are breakpoints.
For example, in a regression model in which cigarette smoking is the independent variable of primary interest and the dependent variable is lifespan measured in years, researchers might include education and income as additional independent variables, to ensure that any observed effect of smoking on lifespan is not due to those other socio ...
In the formula above we consider n observations of one dependent variable and p independent variables. Thus, Y i is the i th observation of the dependent variable, X ik is k th observation of the k th independent variable, j = 1, 2, ..., p. The values β j represent parameters to be estimated, and ε i is the i th independent identically ...
The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.