Search results
Results From The WOW.Com Content Network
A Grand Prix motorcyclist leaning in a turn The forces, both physical and inertial, acting on a leaning bike in the rotating reference frame of a turn where N is the normal force, F f is friction, m is mass, r is turn radius, v is forward speed, and g is the acceleration of gravity.
The dimensionless added mass coefficient is the added mass divided by the displaced fluid mass – i.e. divided by the fluid density times the volume of the body. In general, the added mass is a second-order tensor, relating the fluid acceleration vector to the resulting force vector on the body. [1]
The expression on the right hand side is the centripetal acceleration multiplied by mass, the force required to turn the vehicle. The left hand side is the maximum frictional force, which equals the coefficient of friction multiplied by the normal force. Rearranging the maximum cornering speed is
This includes braking, and deceleration (which is an acceleration at a negative rate). [6] No motion of the center of mass relative to the wheels is necessary, and so load transfer may be experienced by vehicles with no suspension at all. Load transfer is a crucial concept in understanding vehicle dynamics. The same is true in bikes, though ...
The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.
The jump in acceleration equals the force on the mass divided by the mass. That is, each time the mass passes through a minimum or maximum displacement, the mass experiences a discontinuous acceleration, and the jerk contains a Dirac delta until the mass stops.
It also depends on the distribution of the mass: distributing the mass further from the center of rotation increases the moment of inertia by a greater degree. For a single particle of mass m {\displaystyle m} a distance r {\displaystyle r} from the axis of rotation, the moment of inertia is given by I = m r 2 . {\displaystyle I=mr^{2}.}
A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously. The mass might be a projectile or a ...