When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    An unaugmented floating-point system would contain only normalized numbers (indicated in red). Allowing denormalized numbers (blue) extends the system's range. In computer science, subnormal numbers are the subset of denormalized numbers (sometimes called denormals) that fill the underflow gap around zero in floating-point arithmetic.

  3. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  4. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...

  5. Normal number (computing) - Wikipedia

    en.wikipedia.org/wiki/Normal_number_(computing)

    In computing, a normal number is a non-zero number in a floating-point representation which is within the balanced range supported by a given floating-point format: it is a floating point number that can be represented without leading zeros in its significand. The magnitude of the smallest normal number in a format is given by:

  6. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    Additionally, they are frequently encountered as a pedagogical tool in computer-science courses to demonstrate the properties and structures of floating-point arithmetic and IEEE 754 numbers. Minifloats with 16 bits are half-precision numbers (opposed to single and double precision ).

  7. decimal32 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Decimal32_floating-point...

    decimal32 supports 'normal' values, which can have 7 digit precision from ±1.000 000 × 10 ^ −95 up to ±9.999 999 × 10 ^ +96, plus 'subnormal' values with ramp-down relative precision down to ±1. × 10 ^ −101 (one digit), signed zeros, signed infinities and NaN (Not a Number). The encoding is somewhat complex, see below.

  8. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ 2 × 10 308. The number of normal floating-point numbers in a system (B, P, L, U) where B is the base of the system, P is the precision of the significand (in base B),

  9. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and ...