When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ + ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  4. Involutory matrix - Wikipedia

    en.wikipedia.org/wiki/Involutory_matrix

    Involutory matrices are all square roots of the identity matrix. This is a consequence of the fact that any invertible matrix multiplied by its inverse is the identity. [ 1 ]

  5. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    [1] [2] [3] That is, given an invertible matrix and the outer product of vectors and , the formula cheaply computes an updated matrix inverse (+)). The Sherman–Morrison formula is a special case of the Woodbury formula .

  6. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix having a multiplicative inverse, that is, a matrix B such that AB = BA = I. Invertible matrices form the general linear group. Involutory matrix: A square matrix which is its own inverse, i.e., AA = I. Signature matrices, Householder matrices (Also known as 'reflection matrices' to reflect a point about a plane or line) have ...

  7. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    A square matrix whose transpose is equal to its inverse is called an orthogonal matrix; ... and its inverse is the transpose of the inverse of the original matrix.

  8. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    The inverse of a matrix has each eigenvalue inverted. A uniform scaling matrix is analogous to a constant number. In particular, the zero is analogous to 0, and; the identity matrix is analogous to 1. An idempotent matrix is an orthogonal projection with each eigenvalue either 0 or 1. A normal involution has eigenvalues .

  9. Unitary matrix - Wikipedia

    en.wikipedia.org/wiki/Unitary_matrix

    In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (⁠ † ⁠), so the equation above is written