Search results
Results From The WOW.Com Content Network
The square has Dih 4 symmetry, order 8. There are 2 dihedral subgroups: Dih 2, Dih 1, and 3 cyclic subgroups: Z 4, Z 2, and Z 1. A square is a special case of many lower symmetry quadrilaterals: A rectangle with two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A parallelogram with one right angle and two ...
The area of a rectangle is equal to the product of two adjacent sides. The area of a square is equal to the product of two of its sides (follows from 3). Next, each top square is related to a triangle congruent with another triangle related in turn to one of two rectangles making up the lower square. [10]
If it also has exactly two lines of reflectional symmetry then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a square. The perimeter of a parallelogram is 2(a + b) where a and b are the lengths of adjacent sides.
In a square or other rectangle, all pairs of adjacent sides are perpendicular. A right trapezoid is a trapezoid that has two pairs of adjacent sides that are perpendicular. Each of the four maltitudes of a quadrilateral is a perpendicular to a side through the midpoint of the opposite side.
In a right triangle, the hypotenuse is the side that is opposite the right angle, while the other two sides are called the catheti or legs. [7] The length of the hypotenuse can be calculated using the square root function implied by the Pythagorean theorem. It states that the sum of the two legs squared equals the hypotenuse squared.
A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles). Oblong: longer than wide, or wider than long (i.e., a rectangle that is not a square). [5] Kite: two pairs of adjacent sides are of equal length.
The orange and green quadrilaterals are congruent; the blue one is not congruent to them. Congruence between the orange and green ones is established in that side BC corresponds to (in this case of congruence, equals in length) JK, CD corresponds to KL, DA corresponds to LI, and AB corresponds to IJ, while angle ∠C corresponds to (equals) angle ∠K, ∠D corresponds to ∠L, ∠A ...
Given any parallelogram, construct on its sides four squares external to the parallelogram. The quadrilateral formed by joining the centers of those four squares is a square. [1] It is a special case of van Aubel's theorem and a square version of the Napoleon's theorem.