Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.
In probability theory and statistics, an inverse distribution is the distribution of the reciprocal of a random variable. Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters .
to the F-distribution with being the numerator degrees of freedom and the denominator degrees of freedom. Using the F-distribution is a natural candidate because the test statistic is the ratio of two scaled sums of squares each of which follows a scaled chi-squared distribution.
The F table serves as a reference guide containing critical F values for the distribution of the F-statistic under the assumption of a true null hypothesis. It is designed to help determine the threshold beyond which the F statistic is expected to exceed a controlled percentage of the time (e.g., 5%) when the null hypothesis is accurate.
F IT is the inbreeding coefficient of an individual (I) relative to the total (T) population, as above; F IS is the inbreeding coefficient of an individual (I) relative to the subpopulation (S), using the above for subpopulations and averaging them; and F ST is the effect of subpopulations (S) compared to the total population (T), and is ...
In probability theory and statistics, the noncentral F-distribution is a continuous probability distribution that is a noncentral generalization of the (ordinary) F-distribution. It describes the distribution of the quotient ( X / n 1 )/( Y / n 2 ), where the numerator X has a noncentral chi-squared distribution with n 1 degrees of freedom and ...
Here F X is the cumulative distribution function of X, f X is the corresponding probability density function, Q X (p) is the corresponding inverse cumulative distribution function also called the quantile function, [2] and the integrals are of the Riemann–Stieltjes kind.
The F-test statistic is the ratio, after scaling by the degrees of freedom. If there is no difference between population means this ratio follows an F-distribution with 2 and 3n − 3 degrees of freedom. In some complicated settings, such as unbalanced split-plot designs, the sums-of-squares no longer have scaled chi-squared distributions ...