When.com Web Search

  1. Ads

    related to: how to find endpoint formula in statistics graph analysis problems pdf answers

Search results

  1. Results From The WOW.Com Content Network
  2. Cut (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cut_(graph_theory)

    A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S and T. The cut-set of a cut C = (S, T) is the set {(u, v) ∈ E | u ∈ S, v ∈ T} of edges that have one endpoint in S and the other endpoint in T. If s and t are specified vertices of the graph G, then an s – t cut is a cut in which s belongs to the set S and t ...

  3. Closed graph property - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_property

    [1] [2] A function f : X → Y between topological spaces has a closed graph if its graph is a closed subset of the product space X × Y. A related property is open graph. [3] This property is studied because there are many theorems, known as closed graph theorems, giving conditions under which a function with a closed graph is necessarily ...

  4. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The Borel graph theorem, proved by L. Schwartz, shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis. [10] Recall that a topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space.

  5. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    The closed graph theorem is an important result in functional analysis that guarantees that a closed linear operator is continuous under certain conditions. The original result has been generalized many times. A well known version of the closed graph theorems is the following.

  6. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    In any graph, the degree ⁡ of a vertex is defined as the number of edges that have as an endpoint. For graphs that are allowed to contain loops connecting a vertex to itself, a loop should be counted as contributing two units to the degree of its endpoint for the purposes of the handshaking lemma. [2]

  7. Incidence matrix - Wikipedia

    en.wikipedia.org/wiki/Incidence_matrix

    It is the incidence matrix of any bidirected graph that orients the given signed graph. The column of a positive edge has a 1 in the row corresponding to one endpoint and a −1 in the row corresponding to the other endpoint, just like an edge in an ordinary (unsigned) graph. The column of a negative edge has either a 1 or a −1 in both rows.

  8. Boundary (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Boundary_(graph_theory)

    The edge boundary is the set of edges with one endpoint in the inner boundary and one endpoint in the outer boundary. [1] These boundaries and their sizes are particularly relevant for isoperimetric problems in graphs, separator theorems, minimum cuts, expander graphs, and percolation theory.

  9. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.