Ad
related to: conic sections class 11 maths book pdf 2023 24amazon.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.
For example, the different conic sections are all equivalent in (complex) projective geometry, and some theorems about circles can be considered as special cases of these general theorems. During the early 19th century the work of Jean-Victor Poncelet, Lazare Carnot and others established projective geometry as an independent field of ...
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.
A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.
More generally, when the directrix is an ellipse, or any conic section, and the apex is an arbitrary point not on the plane of , one obtains an elliptic cone [4] (also called a conical quadric or quadratic cone), [5] which is a special case of a quadric surface.
Brianchon's theorem can be proved by the idea of radical axis or reciprocation. To prove it take an arbitrary length (MN) and carry it on the tangents starting from the contact points: PL = RJ = QH = MN etc. Draw circles a, b, c tangent to opposite sides of the hexagon at the created points (H,W), (J,V) and (L,Y) respectively.
GeoGebra is an interactive mathematics software suite for learning and teaching science, technology, engineering, and mathematics from primary school up to the university level. Constructions can be made with points, vectors, segments, lines, polygons, conic sections, inequalities, implicit polynomials and functions, all of which can be edited ...