Search results
Results From The WOW.Com Content Network
A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, [5] are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.
For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: [1] [2] A sample space, , which is the set of all possible outcomes. An event space, which is a set of events, , an event being a set of outcomes in the sample space.
The sample space, often represented in notation by , is the set of all possible outcomes of a random phenomenon being observed. The sample space may be any set: a set of real numbers, a set of descriptive labels, a set of vectors, a set of arbitrary non-numerical values, etc. For example, the sample space of a coin flip could be Ω = {"heads ...
An event, however, is any subset of the sample space, including any singleton set (an elementary event), the empty set (an impossible event, with probability zero) and the sample space itself (a certain event, with probability one). Other events are proper subsets of the sample space that contain multiple elements. So, for example, potential ...
A random experiment is described or modeled by a mathematical construct known as a probability space. A probability space is constructed and defined with a specific kind of experiment or trial in mind. A mathematical description of an experiment consists of three parts: A sample space, Ω (or S), which is the set of all possible outcomes.
In probability theory, an elementary event, also called an atomic event or sample point, is an event which contains only a single outcome in the sample space. [1] Using set theory terminology, an elementary event is a singleton. Elementary events and their corresponding outcomes are often written interchangeably for simplicity, as such an event ...
In examples such as these, the sample space is often suppressed, since it is mathematically hard to describe, and the possible values of the random variables are then treated as a sample space. But when two random variables are measured on the same sample space of outcomes, such as the height and number of children being computed on the same ...
Another way to describe collectively exhaustive events is that their union must cover all the events within the entire sample space. For example, events A and B are said to be collectively exhaustive if = where S is the sample space. Compare this to the concept of a set of mutually exclusive events. In such a set no more than one event can ...