When.com Web Search

  1. Ad

    related to: synthesis of atp by the chemiosmotic mechanism

Search results

  1. Results From The WOW.Com Content Network
  2. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    Peter D. Mitchell proposed the chemiosmotic hypothesis in 1961. [1] In brief, the hypothesis was that most adenosine triphosphate (ATP) synthesis in respiring cells comes from the electrochemical gradient across the inner membranes of mitochondria by using the energy of NADH and FADH 2 formed during the oxidative breakdown of energy-rich molecules such as glucose.

  3. Peter D. Mitchell - Wikipedia

    en.wikipedia.org/wiki/Peter_D._Mitchell

    Mitchell's chemiosmotic hypothesis was the basis for understanding the actual process of oxidative phosphorylation. At the time, the biochemical mechanism of ATP synthesis by oxidative phosphorylation was unknown. In chemiosmosis, ions move down their electrochemical gradient across a membrane.

  4. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    Depiction of ATP synthase using the chemiosmotic proton gradient to power ATP synthesis through oxidative phosphorylation. In the 1960s through the 1970s, Paul Boyer , a UCLA Professor, developed the binding change, or flip-flop, mechanism theory, which postulated that ATP synthesis is dependent on a conformational change in ATP synthase ...

  5. Jennifer Moyle - Wikipedia

    en.wikipedia.org/wiki/Jennifer_Moyle

    Jennifer Moyle (April 30, 1921 - August 1, 2016) [1] [2] was a British biochemist who helped discover the chemiosmotic mechanism of ATP synthesis. Jennifer Moyle at Cambridge, ca 1950. She also conducted research on the properties of purified isocitric enzymes [3] and calcium import in the mitochondria during cellular respiration. [4]

  6. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    ATP synthase, also called complex V, is the final enzyme in the oxidative phosphorylation pathway. This enzyme is found in all forms of life and functions in the same way in both prokaryotes and eukaryotes. [67] The enzyme uses the energy stored in a proton gradient across a membrane to drive the synthesis of ATP from ADP and phosphate (P i).

  7. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    The cycles of synthesis and degradation of ATP; 2 and 1 represent input and output of energy, respectively. ATP is stable in aqueous solutions between pH 6.8 and 7.4 (in the absence of catalysts). At more extreme pH levels, it rapidly hydrolyses to ADP and phosphate. Living cells maintain the ratio of ATP to ADP at a point ten orders of ...

  8. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Including one H + for the transport reactions, this means that synthesis of one ATP requires 1 + 10/3 = 4.33 protons in yeast and 1 + 8/3 = 3.67 in vertebrates. This would imply that in human mitochondria the 10 protons from oxidizing NADH would produce 2.72 ATP (instead of 2.5) and the 6 protons from oxidizing succinate or ubiquinol would ...

  9. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    This gradient is used by the F O F 1 ATP synthase complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as Complex V of the electron transport chain. [10] The F O component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c ...