When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The confidence interval can be expressed in terms of statistical significance, e.g.: "The 95% confidence interval represents values that are not statistically significantly different from the point estimate at the .05 level." [20] Interpretation of the 95% confidence interval in terms of statistical significance.

  3. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

  4. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    If each interval individually has coverage probability 0.95, the simultaneous coverage probability is generally less than 0.95. A 95% simultaneous confidence band is a collection of confidence intervals for all values x in the domain of f(x) that is constructed to have simultaneous coverage probability 0.95.

  5. Margin of error - Wikipedia

    en.wikipedia.org/wiki/Margin_of_error

    For a confidence level, there is a corresponding confidence interval about the mean , that is, the interval [, +] within which values of should fall with probability . Precise values of z γ {\displaystyle z_{\gamma }} are given by the quantile function of the normal distribution (which the 68–95–99.7 rule approximates).

  6. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    By a similar argument, the numerator values of 3.51, 4.61, and 5.3 may be used for the 97%, 99%, and 99.5% confidence intervals, respectively, and in general the upper end of the confidence interval can be given as ⁡ (), where is the desired confidence level.

  7. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    Calculating the confidence interval. Let's say we have a sample with size 11, sample mean 10, and sample variance 2. For 90% confidence with 10 degrees of freedom, the one-sided t value from the table is 1.372 . Then with confidence interval calculated from

  8. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The dependence of the confidence intervals on sample size is further illustrated below. For N = 10, the 95% confidence interval is approximately ±13.5789 standard deviations. For N = 100 the 95% confidence interval is approximately ±4.9595 standard deviations; the 99% confidence interval is approximately ±140.0 standard deviations.

  9. Confidence distribution - Wikipedia

    en.wikipedia.org/wiki/Confidence_Distribution

    Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.