Search results
Results From The WOW.Com Content Network
Radius of curvature sign convention for optical design. Radius of curvature (ROC) has specific meaning and sign convention in optical design.A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis.
The sign of the weight of a tensor density, such as the weight of the determinant of the covariant metric tensor. The active and passive sign convention of current, voltage and power in electrical engineering. A sign convention used for curved mirrors assigns a positive focal length to concave mirrors and a negative focal length to convex mirrors.
The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror.. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power.
A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ | R 1 | and d ≪ | R 2 |).. In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces.
Sign convention for Gaussian lens equation [25] Parameter Meaning + Sign − Sign s o: The distance between an object and a lens. Real object Virtual object s i: The distance between an image and a lens. Real image Virtual image f: The focal length of a lens. Conversing lens Diverging lens y o: The height of an object from the optical axis ...
Similarly to curved mirrors, thin lenses follow a simple equation that determines the location of the images given a particular focal length and object distance (): + = where is the distance associated with the image and is considered by convention to be negative if on the same side of the lens as the object and positive if on the opposite side ...
In optics, spherical aberration (SA) is a type of aberration found in optical systems that have elements with spherical surfaces.This phenomenon commonly affects lenses and curved mirrors, as these components are often shaped in a spherical manner for ease of manufacturing.
where S 1 is the distance from the object to the lens, θ 2 is the distance from the lens to the image, and f is the focal length of the lens. In the sign convention used here, the object and image distances are positive if the object and image are on opposite sides of the lens. [45]